Zoom In
Zoom Out
Integral Solution
We start with the integral:
\[ I = \int \frac{dx}{(x+2)\sqrt{x+11}} \]
Let \( u = \sqrt{x + 11} \). Then:
\[ u^2 = x + 11 \implies x = u^2 - 11 \quad \text{and} \quad dx = 2u \, du \]
Rewrite the Integral
Substitute \( x + 2 = u^2 - 9 \) into the original integral:
\[ I = \int \frac{2u \, du}{(u^2 - 9)u} = 2 \int \frac{du}{u^2 - 9} \]
Partial Fraction Decomposition
Recognize the standard integral form:
\[ \int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln\left|\frac{u - a}{u + a}\right| + C \]
For \( a = 3 \):
\[ 2 \int \frac{du}{u^2 - 9} = 2 \cdot \frac{1}{6} \ln\left|\frac{u - 3}{u + 3}\right| + C = \frac{1}{3} \ln\left|\frac{u - 3}{u + 3}\right| + C \]
Substitute Back
Replace \( u \) with \( \sqrt{x + 11} \):
\[ \frac{1}{3} \ln\left|\frac{\sqrt{x + 11} - 3}{\sqrt{x + 11} + 3}\right| + C \]
Final Answer
\[ \boxed{\frac{1}{3} \ln\left|\frac{\sqrt{x + 11} - 3}{\sqrt{x + 11} + 3}\right| + C} \]
Partial Derivative Solution
Question2
\[
u = \log \left( \frac{x^2 + y^2}{x + y} \right)
\]
We need to find \( x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \).
solution :
First, we compute the partial derivative with respect to \( x \):
\[
\frac{\partial u}{\partial x} = \frac{1}{\frac{x^2 + y^2}{x + y}} \cdot \frac{\partial}{\partial x} \left( \frac{x^2 + y^2}{x + y} \right)
\]
Using the quotient rule:
\[
\frac{\partial}{\partial x} \left( \frac{x^2 + y^2}{x + y} \right) = \frac{(x + y) \frac{\partial}{\partial x}(x^2 + y^2) - (x^2 + y^2) \frac{\partial}{\partial x}(x + y)}{(x + y)^2}
\]
\[
= \frac{(x + y)(2x) - (x^2 + y^2)(1)}{(x + y)^2}
\]
\[
= \frac{2x(x + y) - (x^2 + y^2)}{(x + y)^2}
\]
\[
= \frac{2x^2 + 2xy - x^2 - y^2}{(x + y)^2}
\]
\[
= \frac{x^2 + 2xy - y^2}{(x + y)^2}
\]
Substitute back:
\[
\frac{\partial u}{\partial x} = \frac{x + y}{x^2 + y^2} \cdot \frac{x^2 + 2xy - y^2}{(x + y)^2}
\]
\[
= \frac{x^2 + 2xy - y^2}{(x^2 + y^2)(x + y)}
\]
Next, we compute the partial derivative with respect to \( y \):
\[
\frac{\partial u}{\partial y} = \frac{1}{\frac{x^2 + y^2}{x + y}} \cdot \frac{\partial}{\partial y} \left( \frac{x^2 + y^2}{x + y} \right)
\]
Using the quotient rule:
\[
\frac{\partial}{\partial y} \left( \frac{x^2 + y^2}{x + y} \right) = \frac{(x + y) \frac{\partial}{\partial y}(x^2 + y^2) - (x^2 + y^2) \frac{\partial}{\partial y}(x + y)}{(x + y)^2}
\]
\[
= \frac{(x + y)(2y) - (x^2 + y^2)(1)}{(x + y)^2}
\]
\[
= \frac{2y(x + y) - (x^2 + y^2)}{(x + y)^2}
\]
\[
= \frac{2xy + 2y^2 - x^2 - y^2}{(x + y)^2}
\]
\[
= \frac{2xy + y^2 - x^2}{(x + y)^2}
\]
Substitute back:
\[
\frac{\partial u}{\partial y} = \frac{x + y}{x^2 + y^2} \cdot \frac{2xy + y^2 - x^2}{(x + y)^2}
\]
\[
= \frac{2xy + y^2 - x^2}{(x^2 + y^2)(x + y)}
\]
Now, we compute \( x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \):
\[
x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = x \left( \frac{x^2 + 2xy - y^2}{(x^2 + y^2)(x + y)} \right) + y \left( \frac{2xy + y^2 - x^2}{(x^2 + y^2)(x + y)} \right)
\]
\[
= \frac{x(x^2 + 2xy - y^2) + y(2xy + y^2 - x^2)}{(x^2 + y^2)(x + y)}
\]
\[
= \frac{x^3 + 2x^2y - xy^2 + 2xy^2 + y^3 - yx^2}{(x^2 + y^2)(x + y)}
\]
\[
= \frac{x^3 + x^2y + xy^2 + y^3}{(x^2 + y^2)(x + y)}
\]
Notice that the numerator \( x^3 + x^2y + xy^2 + y^3 \) can be factored:
\[
x^3 + x^2y + xy^2 + y^3 = (x + y)(x^2 + xy + y^2)
\]
So the expression simplifies to:
\[
= \frac{(x + y)(x^2 + xy + y^2)}{(x^2 + y^2)(x + y)}
\]
\[
= \frac{x^2 + xy + y^2}{x^2 + y^2}
\]
Thus, the final answer is:
\[
\boxed{\frac{x^2 + xy + y^2}{x^2 + y^2}}
\]