QUESTION:
\[
I = \int \frac{\sin 2x}{\sqrt{a^2 - \sin^4 x}} \, dx, \quad a > 0.
\]Step 1:We know that:
\[ \sin 2x = 2 \sin x \cos x. \]Substituting this into the integral, we get:
\[ I = \int \frac{2 \sin x \cos x}{\sqrt{a^2 - \sin^4 x}} \, dx. \]Step 2: Substitution \( \sin^2 x = t \)
Let \( \sin^2 x = t \). Then:
\[ 2 \sin x \cos x \, dx = dt, \quad \sin^4 x = t^2. \]The integral now becomes:
\[ I = \int \frac{dt}{\sqrt{a^2 - t^2}}. \]Step 3: Evaluate the integral
The integral \( \int \frac{dt}{\sqrt{a^2 - t^2}} \) is a standard result:
\[ I = \sin^{-1} \left( \frac{t}{a} \right) + C. \]Step 4: Back-substitute \( t = \sin^2 x \)
Substituting \( t = \sin^2 x \) back, we get:
\[ I = \sin^{-1} \left( \frac{\sin^2 x}{a} \right) + C. \]Final Answer:
\[ \boxed{I = \sin^{-1} \left( \frac{\sin^2 x}{a} \right) + C.} \]